Outcome of UCL Workshop on the
Architectural Aspects of Physics
Analysis in Athena

Fredrik Akesson, Kétévi Assmagan, Paolo Calafiura,
Kyle Cranmer, Samir Ferrag, Simon George, Jorgen Beck Hansen,
Roger Jones, Nikos Konstantinidis, Peter Loch, David Quarrie,
Srini Rajagopalan, David Rousseau, R.D. Schaffer, Peter Sherwood

Abstract

From April 5-7, 2004 a workshop was held at UCL to address the architectural
aspects of physics analysis within athena. This document reviews the existing
proposals; identifies underlying issues; and provides several new proposals. A time-
line for these proposals and goals for the BNL software week are also presented.

1 Introduction and Goals

The purpose of the workshop was to address the architectural aspects of physics anal-
ysis within athena. The Reconstruction Task Force (RTF) addressed the architectural
aspects of reconstruction, but their mandate stopped short of physics analysis. Let us
quote the RTF proposal [1]:

For the purposes of this report, the process of “analysis” has been defined
in the following way: making analysis-specific cuts to existing objects, not
making new objects. It is therefore necessary to have a processing step that
goes from the Combined Reconstruction objects up to the input objects used
by user analysis. This section describes this step, which is best described
as “preparation for analysis” and the new objects and algorithms are part
of the analysis data domain.

This quote represents only part of the starting point for the workshop. We review
the other existing approaches in Section 2, and identify their common themes and
fundamental differences.

The goals of this workshop [2] were to

e review existing approaches and identify their common themes and fundamental
differences.

e consider use cases and identify requirements for analysis inside athena

e agree on an interface for common analysis tools

e provide proposals for the particle class

e clarify the short-, medium-, and long-term goals for those developing the analysis

architecture

Because analysis and reconstruction are strongly coupled, some of the proposals in
this document also apply to the reconstruction domain: e.g. the INavigable4AMomentum
proposal in Section 4. We also adopt a less restrictive view of “analysis”: e.g. the
IParticle proposal found in Section 5 makes it easy for a physicist to make new objects
within their analysis. In Section 6 the “preparation for analysis” is fleshed out in terms
of Particle Definition Algorithms.

In the remaining portion of this document we try to establish a loose time-line for
how the analysis architecture will develop.

2 Review of Existing Approaches

At the A-team meeting on Monday, February 23rd 2004, the architectural model
adopted by Artemis was discussed extensively. The main author of Artemis, P. Sher-
wood, was invited to that meeting. There were several questions about the new EDM
(Event Data Model) interfaces, the adaptor classes, the wrappers for services such as
StoreGate and the helper tools that were being developed by Artemis. Are these really
needed or can we follow the Gaudi-ATHENA architectural model coupled with recent
RTF recommendations to establish a framework for analysis? By evolving the existing
EDM and framework functionalities, would it be possible to satisfy any requirements
implemented by the Artemis approach? The workshop was originally organized to
address these issues and recommend an architectural model for analysis.

In sub-sections 2.1 and 2.2 we will examine the relationship of the Artemis approach
and the seeds of an analysis EDM sewn by the RTF. In the remainder of this section
we will look at other approaches which do not address an analysis framework per se,
but various aspects of it (e.g. navigation, tools, and the particle class).

2.1 Review of Relevant RTF Recommendations

As mentioned above, the RTF’s mandate stopped short of the analysis domain; however,
their report does envisage some aspects of analysis. In particular, the RTF specifies
how the combined reconstruction domain and the analysis domain should interact (see
Figure 1). In Section 6 we will discuss the analysis preparation algorithms in more
detail. The RTF also addressed the need for a “common look and feel” for the user.
They identified three approaches to provide this common look and feel:

e Inheritance
e Templates

e Adaptors/Wrappers

The pros and cons of these three approaches were investigated and each of the three
approaches is employed at times in the atlas software.

The RTF proposed the [4Momentum interface for all 4-momentum like objects.
I4Momentum provides a common look and feel through inheritance and several classes
which implement 4-momentum manipulations for a specific “base” or representation.

The RTF also sketched the relationship of identified particles to a common base class
(see Figure 2). Because I4Momentum does not provide particle id, vertex information,
identification probability, navigation to constituents, or measurement errors it cannot
be the base class. After reviewing the other existing approaches, a proposal for IParticle
is presented in Section 5.

Figure 1: RTF Figure 2 showing the relationship between the combined reconstruction

and the analysis domain.

lAnal ysi s Donai n

subsystem
Raw Data EDM fag - - - mm e oo e et reconstruction
<<uses>> algorithms
Subsystem <<uses/creates>>
reconstruction L7
Tracking Calorimetry
reconstruction reconstruction
data model data model _l
N
<<uses>> --.| Combined
\S reconstruction
_l o e algorithms
-t
_______ <<uses/créates>>
Combined - *
reconstruction Ny
data model I~ <<uses>>
<<u§és>> - S
Analysis data) Analysis
T o il EEELEE preparation
mode <<uses/creates>> algorithms
Truth event data
model

Particlé
[__ParticleTrack | [Electron | [Photon | [Muon] [identifieddet | [Tau
Calo Info ‘Global event variables
Vertex Reduced Cell info ghmis

Figure 2: RTF Figure 23 showing several particle types inheriting from IParticle base
class.

2.2 Artemis: Design and Functionality

Artemis is an analysis framework designed more than a year before the UCL meeting.
Artemis provides:

e a standard interface to heterogeneous reconstruction classes (via the design pat-
tern Adaptor)

e FromTDS class to automate redundant tasks

e some common analysis utilities (like sort by p|)

Hierarchy

At the heart of the Artemis approach is the Artemis Hierarchy shown in Figure 3.
At the top of the Hierarchy is Artemis: : TAQ - a base class which provides the accept ()
method for the visitor pattern and begin and end iterators for a list of associated IAOs.
The associations provided by Artemis are discussed below.

Inheriting from TAO is IMomentum. IMomentum differs from [4Momentum be-
cause it has a different interface and because it inherits from TAQO. There are currently
no concrete implementations of IMomentum in Artemis; however, any concrete im-
plementation would need to implement the visitor pattern and associations. On the
other hand, I4Momentum does not provide associations or accept(). The presence
of “unnecessary” methods in the momentum component of the interface was consid-
ered acceptable by the designers of Artemis because of the power of the visitor pattern
and the ability to make arbitrary associations. The presence of these “unnecessary”
methods was not considered acceptable for I4AMomentum, where the clients are more
numerous and varied. This “point of contention” was identified at the meeting and is
the most fundamental architectural difference between the Artemis approach and the
proposal for INavigabledMomentum and IParticle later in this document.

Adaptors & Simple Objects

When Artemis was first developed the various combined reconstruction classes
lacked a common interface. Furthermore, Atlfast and the combined reconstruction
lacked a common interface. In order to provide a common interface (a common look
and feel) to the user Artemis adopted the design pattern Adaptor. For instance, all
muons are dealt with via the Artemis::IParticle interface, although Atlfast, MuonBox,
and Muid/Moore have different interfaces. The Adaptors are the concrete implemen-
tations of Artemis::IParticle, Artemis::IJet, etc. Most Adaptors have a pointer to the
original object in StoreGate (which cannot be modified).

In order to manage memory, the adaptors use boost’s “shared pointers”. The cur-
rent version of Artemis does not provide the user to access the pointer to the adaptee,

Artemis::IAO

accept()
Associations

T

Artemis::IMomentum

HepLorentzVector

Artemis::ICell Artemis::IParticle Artemis::|Jet
pdgid

charge
pointer to adaptee pointer to adaptee pointer to adaptee

Figure 3: The Artemis Hierarchy

but that modification is being considered. Persistification issues are also being consid-
ered, but are not expected to be too difficult.

Because the user may need to create a new particle or modify the momentum or
particle id, “simple objects” were created. Simple objects do not have a pointer to an
adaptee in StoreGate, but instead have cached information.

Once the IParticle interface has been agreed upon and implemented and Atlfast can
create the equivalent AOD objects, the need for adaptors will be diminished. However,
the fact that Adaptors belong to the Artemis Hierarchy makes them different from the
IParticle proposal below. The memory management features of Artemis and the need
for an equivalent to simple objects is clear and discussed in Section 12.

FromTDS

FromTDS is a class provided by Artemis which does not belong to the hierarchy in
Figure 3. The use of FromTDS and the corresponding object structure is illustrated
in Figure 5. The primary function of FromTDS is the templated get () method. The
template parameter provides a number of typedefs necessary to specify the type of
the source collection, the type of the source collection’s elements, the adaptor to use,
the adaptor builder to use, the type of the destination collection, and the type of the
destination collection’s elements (see Figure 4). Figure 6 shows the sequence diagram
for FromTDS->get ().

The Functionality of FromTDS->get() can be emulated with standard StoreGate
retrieve commands in conjunction with the IParticle base class and navigation. This
requires

1 The collection is registered in StoreGate as it’s concrete type and a symlink of
that collection is made with type IParticle.

class MuidTrackCollection{

public:
typedef
typedef
typedef
typedef
typedef
typedef
typedef

Artemis::PaticleCollection

MuidTrackContainer
SrcCollection: :value_type

MuidTrackAdaptor
SimpleAdaptorBuilder2<MuidTrackCollection>

ParticleCollection

DestCollection

DestCollection: :value_type
static std::string description(){return "MuidTrackContainer";}

SrcCollection;
SrcPtr;
Adaptor;
AdaptorBuilder;
DestCollection;
DefaultType;
DestType;

Figure 4: An example template parameter for FromTDS

vector<IParticlePtr>

IParticlePtr

IParticlePtr

MooreTrackAdaptor

MooTrackContainer

MooiPatTrack

IParticlePtr

MooreTrackAdaptor

MooiPatTrack

MooreTrackAdaptor

MooiPatTrack

ParticleCollection* myMooreMuons =

ParticleCollection* myMuldStandAloneMuons = myFromTDS—->get<
ParticleCollection* myMuldComboMuons =

ParticleCollection* myMuonboxMuons =

myFromTDS—>get<

myFromTDS—>get<
myFromTDS—>get<

MooreTrackCollection>()

MuidTrackCollection>(m_muidStandAlonekey)
MuidTrackCollection>(m_muidComboKey)

MuonboxTrackCollection>()

Figure 5: Below: Four examples of the usage of FromTDS->get<T>(). Above: UML
diagram showing each IParticlePtr “has a” MooreTrackAdaptor which “has a”
MooiPatTrack. The template parameter MooreTrackCollection is a collection of type-
defs used by FromTDS->get<T>() (see text).

% m_fromTDS m_sgSvc dataHandle 'simpleAdaptorBullder adggtee
artemisAlg

1: get(TDSAddn):DestCollection*<> l |
=

fills in dataHandle AN

1.1: retrieve

Iterate over
all elements

| of container in TDS

1.2: ++ I
m_fromTDS finds B 'L
which AdaptorBuilder 1.3: SimpleAdapterBuilder<>()
to construct from the ! 1
template parameter I | >D

Passes the param to 1.4: operator() I | |
the build
e bulder i ! 1.4.1: new Adaptee()
I simpleAdaptorBuilder
finds which Adaptee
| to construct from the
1

template parameter | |
1

Figure 6: Sequence Diagram for FromTDS

2 The user retrieves the collection as IParticle

3 The user uses Navigation to recover the concrete type.

Tools

Artemis also provides a number of Tools (a.k.a. Helpers or Utilities) in the package
ArtemisUtils. Some of these tools are purely kinematic tools, some make use of the vis-
itor pattern, some make use of Associations, and some make use of Artemis::IParticle’s
extension to the IMomentum interface.

Early in the workshop it was pointed out that if IMomentum inherits from
I4Momentum, then any momentum-like object in Artemis will be able to use a tool
written on [4Momentum. It was also pointed out that if the tool returns an object of
type I4Momentum, the object has “fallen out of the Artemis hierarchy”. To return to
the hierarchy, the user must dynamically cast back to IMomentum.

Example: A tool I4Momentum* largerPt(const I4Momentum*, const I4Momentum)
which returns the input argument with higher pr. If the two input arguments are
Artemis::IParticle, the returned object has fallen out of the hierarchy. An alternate

form of the tool could be
bool largerPt(const I4Momentum*, const I4Momentum*,I4Momentum#), where the
last argument is a return argument. In that case, downcasting could be avoided.

Modifications to Artemis were agreed upon so that Artemis will be able to use
common tools written in terms of INavigable4dMomentum. These modifications are
discussed in Section 11. Even with these modifications, Artemis will be able to provide
a super-set of tools which also take advantage of the visitor pattern and Associations.

Lastly, Artemis has begun the development of modular tools. For example, a tool
has been created which performs n-nested loops over n-collections of Artemis objects,
and for each entry in the sequence calls a generic “calculator”. If the calculator produces
a new collection, a “selector” can be called to make a subset of the new collection as the
final return value. The “looper”, “calculator”, and “selector” are all modular, allowing
them to be used individually or in the larger tool.

Associations

Artemis provides internal associations between arbitrary Artemis::IAO’s. Artemis
associations form a directed graph between IAO’s (in contrast to the tree-structure of
INavigable). Artemis cannot make associations to non-Artemis objects.

Early in the workshop a distinction was made between

e Navigation - Static structure reflecting composition of reconstruction objects.

e Associations - Dynamic associations not restricted to constituency

In particular, a muon might be associated with a jet, but not a constituent of a jet.

What is meant by “internal” associations is that the associations are stored in the
objects themselves (i.e. an Artemis Jet might hold an association to Artemis muons
internally). This is in contradistinction to “external” associations (i.e. a multimap of
some sort). Internal associations have the disadvantage that once an object has been
locked in StoreGate, the object cannot be changed — thus the associations cannot be
changed.

The choice of Artemis’ association strategy was largely influenced by the design
choice for Atlfast associations. In Atlfast, associations are used primarily for compo-
sition tasks; thus, could be handled with INavigable. In the analysis domain, it is
reasonable to suspect that users will want a more flexible structure. However, during
the workshop no use-cases were found that could not be handled with a strategy more
akin to INavigable.

It was also pointed out that it would be useful to have “labeled associations”: a
bookkeeping device for making different sets of associations for different reasons.

2.3 INavigable: Design and Functionality
The original motivation for object navigation came from jet reconstruction:

e Jet constituents are of generic type EnergyCluster; their concrete type is not
exposed to the Jet itself.

e Clients need to retrieve objects of specific concrete type at any node of the rela-
tional tree behind a Jet: one needs a navigation system.

e Constituent objects in the tree can be composites themselves, thus navigation
must be possible to any given level in the tree.

e Constituent objects can contribute their kinematics with a weight to the compos-
ite object, meaning weights must be retrievable and propagated correctly.

The design guideline for the navigation system consists of:

e All three object relations (composition, aggregation and inheritance) to be made
navigable from any arbitrarily chosen node to any desired depth of the relational
tree.

e General solution to honoring and/or forwarding a query for specific object types
at any node of the relational tree with any relational parameter (not restricted to
kinematic weights) suggests very straight forward implementation of composite
objects and simple client interface for phrasing the query.

e Constituent collection inside a composite object means providing optimal collec-
tion type, support for persistency and query handling.

e All low-level methods to manage the constituent collection, i.e. all functionality to
put, remove, find, and retrieve constituent objects, or manipulate their relational
parameter. The EnergyCluster is a concrete implementation of the Navigable
4-vector:

The INavigable interface allows navigation to constituents (e.g. electron made of
Cluster and Track, Cluster made of cells) through Navigable<ConstituentContainerType>.
When implemented consistently in analysis and combined reconstruction domains, it
will allow one to ask directly an electron for its CaloCell, for example. One needs the
container type rather than the object type to allow for persistency. In cases of different
constituent types (e.g. egamma has cluster and track), multiple inheritance is needed:
Navigable<TrackContainer>, Navigable<ClusterContainer>. The positive aspect
is the compilation time checking whereas a drawback is that it is not very flexible.

It is believed that this design could accommodate the “Identified Particles” domain,
the final output of reconstruction, as well as the user analysis domain. The combined

ParticleCandidateBuilder

ParticleBuilder

Figure 7: Algorithmic flow of information in PID.

reconstruction objects will probably not implement IParticle, but will probably imple-
ment [NavigabledMomentum and certainly INavigable.

As a convention INavigable is for constituency (i.e. contributes to 4Momentum)
and is not for associations. A similar structure could be used for Associations. This
structure is appropriate for Composite Particles where the required constituency is
honored.

2.4 PID: Design and Functionality

PID is a prototype to handle particle identification. A key feature of the PID design is
the heterogeneous container (“Chameleon”) capable of storing any data type indexed
with a string key (retaining type information). The algorithmic or information flow is
organized in a similar way as egammaRec to tauRec (see Figure 7).

The PID approach largely stresses that from a single particle candidate many par-
ticles can be created. The particles are unique (as specified by its quantum numbers).
The PID philosophy is that a Particle should hold information about the choices that
were made in creating it.

The PID approach attempts to template the structure of egammaRec, tauRec,
etc... in a single package. This is the role of the ParticleCandidateBuilder. The
ParticleBuilder, which takes ParticleCandidates and produces Particles, is similar to
the Particle Definition Algorithms described in Section 6.

PID provides a particle with a common interface which can hold arbitrary recon-

10

INavigable4AMomentum

I

TrackParticle

#m original Track: Trk:: Track*

#m trackParticleOrigin: TrackParticleOigin
#m reconstructedVertex: const Vtx::RecVertex*
#m charge: double

+charge(): const double

+perigeeAfterFit(): const Trk::MeasuredPerigee

+reconstructedVertex(): const Vtx::RecVertex*

+original Track(): const Trk:: Track*

+TrackParticle(track: Trk:: Track*, vertex: Vt x: : RecVertex*, ori gi n: TrackParticl eOri gin)

Figure 8: The Proposal for Track Particle

struction or analysis information. Persistency issues related to the Chameleon are under
investigation and should be reported at the BNL software week. Expected modifications
to the PID package are discussed in Section 12.

PID also provides some tools similar to the modular looper, calculator, selector
discussed in Section 7.

2.5 Requirements of TrackParticle

As opposed to the other particle classes presented at the UCL meeting, the TrackPar-
ticle is not meant to be the candidate for a general purpose particle class. Instead, the
TrackParticle is meant to be the interface for any algorithms which need tracks (e.g.
vertexing, b-tagging, etc.). There is already a common track class (Trk::Track) which
is used internally by the inner detector software and other subsystem reconstruction
algorithms. The Trk::Track cannot be burdened with analysis domain requirements.
Furthermore, Trk::Track uses a coordinate system that is natural for tracking but dif-
ferent from the coordinate system for physics analysis.

During the UCL workshop, it was agreed that TrackParticle would inherit from
INavigable4AMomentum, will have a pointer to a Trk::Track, and will have vertex infor-
mation (see Figure 8).

2.6 BaBar-Inspired Particle

The BaBar inspired particle class is as single particle class largely tailored for the
analysis seen at BaBar. The BaBar approach is somewhat similar to the PID approach
in that from a single Particle Candidate or “Beta Candidate” many Particles can be

11

created. The BaBar approach uses shared pointers for memory management. The
BaBar particle class also has most information one might need when doing an analysis
(e.g. daughters, vertex information, truth information, pointer to track, pointer to a
cluster, etc...).

The BaBar approach also provides a number of “combiner” classes which all imple-
ment the method combine (1ist<Particle>). Combiners include adding two particles
together to make a mother particle and vertexing tools.

The BaBar approach also allows one to change the information about the particle
(e.g. the particle id, the mass, etc). Sometimes this change requires modification to
the underlying Beta Candidate, sometimes not.

Most in the workshop agreed that there was a need to have a common interface
for tools such as vertexing, that the navigation to daughters, and access to truth in-
formation were all valid requirements. However, there were objections to a “one-class-
does-it-all” approach. Most felt that navigation to daughters and underlying detector
information like tracks and clusters could be handled more elegantly and generally with
INavigable. There was interest in the memory management approach and the fact that
the BaBar particle holds pointers to the algorithms which created it.

3 Identification of Underlying Issues

One of the goals of the workshop was to identify the underlying issues between various
design choices. We review the issues which were identified and discuss them briefly.

3.1 Hierarchy, Visitor, and Casting

The core issue which distinguishes the split inheritance (as seen in the design of INav-
igabledMomentum) and the hierarchy (as seen in the Artemis hierarchy) is the imple-
mentation of unnecessary methods. This was discussed in the Hierarchy portion of
Section 2.2.

In the Artemis design, the TAO forces all sub-classes to implement the accept ()
method for the visitor pattern. The visitor pattern was discussed extensively at the
workshop. The visitor pattern can be used to implement many tools, but is essentially
a tool for type recovery. The key concerns with regard to the visitor pattern are the
issues of scalability (scaling both in the number of visitors and the size of the hierarchy).
A distinction was made between “cyclic” and “acyclic” visitors which illustrates the
trade-off between maintenance and the (over-)use of casting and (slight) performance
degradation [3, 4].

It should be pointed out that the INavigable design is a type of visitor pattern
(where £i11Token () is the equivalent of accept ()). It should also be pointed out that

12

there is a dynamic cast when an INavigable object queries its constituents. It should
also be pointed out that without the visitor pattern for type recovery, tools written with
a return type of [4Momentum, may require an additional cast. The overall performance
issues must still be addressed, but are expected to be acceptable.

3.2 Persistification Issues

Persistification is a omnipresent issue in Atlas software. The most common problem
with persistification is that an object holds a pointer to another object. This pointer
is not persistifiable, but can be replaced with an ElementLink or another equivalent.
It was pointed out that at the end of an analysis, it is not necessary that all objects
are persistifiable; however, it was generally agreed that an analysis should be persis-
tifiable at the level of IParticle. Event Views and associations introduce even more
persistification issues.

3.3 Trigger Issues

The main trigger-related issue is that of thread-safety. The HLT runs athena in a
multi-threaded way. Any analysis code that is ported to the HLT must be thread-safe.
Strings are known to be an issue, thus objects labeled by strings should be instead
labeled with some sort of enumeration service.

4 INavigable4Momentum Proposal

The first agreement of the workshop was that the class currently called EnergyClus-
ter (which inherits from INavigable and I4Momentum with no extensions) should be
renamed INavigableAMomentum and that this class is the common interface for most
objects in the combined reconstruction. The classes which will subclass from INav-
igabledMomentum include CaloCluster, CaloTower, egamma, TrackParticle, and the
IParticle proposed below.

INavigable4dMomentum is a pure interface, and subclasses must either implement
navigation and momentum themselves or inherit from an implementation class. Typi-
cally there is a triple inheritance structure as seen in Figure 9.

4.1 Change to I4Momentum

The set methods of I[4AMomentum was discussed. In particular, should the set methods
be public, private, or protected? It was decided that I4Momentum and IPxxxBase
should not have public set methods, but that subclasses can have public set methods
and modify the protected data members in [PxxxBase.

13

INavigable 14Momentum

Navigable<CaloCellContainer>| INavigable4Momentum P4EEtaPhiMBase

CaloTower

Figure 9: Triple Inheritance structure typical of classes inheriting from INaviga-
bledMomentum.

4.2 IMeasured4dMomentum

IMeasured4Momentum is a class which extends [4Momentum to include errors. This
class needs to be thought through carefully; there is no proposal currently. The difficulty
stems from the fact that for a track to be vertexed a 5-parameter error matrix is required
and the naive implementation would only have error on the four components of four-
momentum.

5 [IParticle Proposal

The second proposal from the workshop was that IParticle should inherit from INavi-
gabledMomentum. Extensions to INavigabledAMomentum are discussed below.

During the workshop four distinct use-cases for [Particle were considered:

e Particles from Reconstruction - For instance an identified electron which was
produced from an egamma object. This electron should be able to navigate to
the egamma object and should extend IParticle to include EoverP() and other
egamma-related quantities. From the egamma object, one can navigate to a
matched track or cluster.

e UserParticle - This is the equivalent of Artemis’ simple objects. These are Par-
ticles that may have as constituents other IParticles (e.g. my particle has these
daughters). UserParticles may also be able to have setPDG(int) methods which
modify the particle id, mass, and recalculate the 4momentum as appropriate.
Different choices in implementation might produce a number of similar classes.

14

e Particles with Forced Decays - Instead of Navigating to IParticles, a user may
want to define a particle with a specified decay structure. For instance, a top
decaying to a W and an b-tagged jet.

e Detector Level Particle - As emphasized by the BaBar inspired particle, a user
may want to form an IParticle from just a track or cluster.

Each of these four use-cases can be satisfied with the IParticle Proposal (see Fig-
ure 10). The TrackParticle is another use case which was discussed with a specific
implementation see in Figure 8.

Shortly after the UCL meeting, it was suggested that [Particle not necessarily in-
clude a particle hypothesis (e.g. a pdg code or a likelihood), and that a new class
IdentifiedParticle be created for that purpose (see Figure 11). The consequences of this
refinement will be investigated for the BNL workshop.

5.1 Particle Factory Proposal

Because analysis domain particles will be created by the user and possibly not registered
with StoreGate (where memory management is implicit), some memory management
tools are desirable. Artemis and the BaBar particles use shared pointers for memory
management. The Artemis implementation uses a particle factory which is very user
friendly. The detailed implementation of the particle factory will be presented at the
BNL workshop. We need to address how difficult it will be for a user to define a class
which sub-class from IParticle, the implementation of the factory for the new type, and
the ability to persistify or register with StoreGate.

5.2 Extensions

The extensions of the INavigabledAMomentum interface necessary for the IParticle in-
terface were discussed briefly at the workshop. It was generally agreed that IParticle
should have methods for accessing the particle’s PDG id, the likelihood of the detector
signature given the hypothesis (returned as a double), and a pointer to the vertex of
the particle’s creation. One should be careful about the ownership of the vertex — there
should not be any problems if the vertices are always stored in StoreGate.

6 Particle Definition Algorithms

Particle Definition Algorithms (PDAs) are a key component of Analysis Preparation.
PDAs take the output of combined reconstruction (which don’t generally inherit from
IParticle) and produce objects which belong to the “Identified Particle” domain. The

15

INavigable

l14Momentum

INavigableaMomentum

INavigable

14Momentum

INavigableaMomentum

Navigable<egamma>

IParticle
int pdg()
double likelihood()

P4EEtaPhiMBase

Navigable<IParticle>

vertex*)

i

IdentifiedElectron
double EoverP()

INavigable

14Momentum

INavigableaMomentum

IParticle
int pdg()
double likelihood()
vertex* getVertex()

P4EEtaPhiMBase

i

UserParticle
setPdg(int)
addDaughter(IParticle)

INavigable

I14Momentum

INavigable4Momentum

Navigable<w,bJet>

IParticle
int pdg()
double likelihood()
vertex* getVertex()

P4EEtaPhiMBase

Navigable<Track,Cluster>

i

Figure 10: Four

TopParticle
addDaughter(bJet)
addDaughter(W)

16

IParticle
int pdg()
double likelihood()
vertex* getVertex()

P4EEtaPhiMBase

i

BaBarParticle
setPdg(int)

examples of concrete implementations of IParticle.

IParticle

f#m_vertex : Vertex*
{#m_charge : charge_t

+vertex() : Vertex*
+charge() : charge_t

IdentifiedParticle

t#m_pdg : pdg_t
t#m_likelihood : double

+pdg() : pdg_t
+likelihood() : double

+EoverP() : double

BosonicHiggs
0

0

2

1

2
PhysicsJet

TrackParticle | | CaloCluster

Figure 11: Possible Refinment of IParticle that puts particle hypothesis only into the
sub-class IdentifiedParticle.

Identified Particle domain was not explicitly mentioned in the RTF proposal, but is
seen as a well-defined stage after combined reconstruction and before analysis. Classes
such as the IdentifiedElectron, IdentifiedMuon, etc... are expected to inherit and extend
IParticle (see Figure 10).

In Figure 12 five example analysis workflows are presented. On the far left is an
object from the combined reconstruction sits in the Transient Data Store (TDS). On
the far right are five users’ codes which implement the kinematic component of their
analyses. The other boxes represent either algorithms which modify the default selec-
tion, or the output of those algorithms. The top-most workflow exemplifies an analysis
which works directly with the reconstructed object using only default selection criteria.
The second analysis exemplifies a user modifying the selection criteria in private code
before proceeding with the kinematic component of his/her analysis. The third work-
flow shows an Artemis user either adapting the object with default selection criteria
or modifying the selection criteria via an adaptor. The advantage of the top three
workflows is that the user has complete control of his/her analysis; thus the possibil-
ity for this workflow will always exist. The disadvantage of the top three workflows
are that modifications to the selection criteria cannot easily be used by other users;
it promotes priviate code being developed making it harder for the physics groups to
converge; and it discourages the adoption of standard particle definitions complicating
systematic studies. These risk factors and general ease-of-use considerations suggest
that there should be standard algorithms for producing Identified Particles from the
output of combined reconstruction.

17

(Example: Ketevi’s H-=>4l analysis uses default accept() in AOD)

(No example yet, but would be very common)

Non-Artemis

Analysis Code ;

Reco Obj or AOD

(similar to how users work with CBNT now)

— User Particle Def.

(Example: Artemis example Algs)

(inTDS)

Default Definition:
Pros — common, easy to manage, ...
Cons - can’t satisfy everyone

User Defined:
Pros — flexible, tailored to analysis

[

(Example: Kyle’s TauRec Adaptor)

Particle Definition
Algorithm

~Phys. WG Defined

v (Example: Kyle’s MissingET truth alg in athena)

Artemis Adaptor

- Default Adaptor 38|

- User Adaptor

(can be used by Artemis)

[

Intermediate Obj
(in TDS)

-

Artemis Adaptor

— Obvious Adaptor a

(can be used by Non—Artemis)

Cons - leads to private code, inconsistent analyses, difficult to manage (no user CVS)
Note — will always be available as an option.

Phys WG Defined:

Pros - tailored to analysis, easy to manage (in CVS Physics/ area), starting point for user—defined
Cons - physics groups will need to manage this, need appropriate class def (AOD may be fine)
Note — Surely the final goal is to have "official analysis" inside CVS

>

Non-Artemis
Analysis Code

- Kinematic Cuts

Non-Artemis
Analysis Code

- Kinematic Cuts

Artemis Analysis
- Kinematic Cuts

Artemis Analysis
- Kinematic Cuts

Non-Artemis
Analysis Code

- Kinematic Cuts

Figure 12: Five example analysis workflows from the output of combined reconstruction
(left) to the kinematic component of analysis (right). Particle Definition Algorithms
are seen as up-stream algorithms that convert combined reconstruction objects into
the “Identified Particle” domain and implement additional selection, particle id, and

kinematic calculations.

18

These Particle Definition Algorithms, are expected to be developed and maintained
by physics groups. Undoubtedly they will first be developed by individual users and
presented to physics groups for approval. Once approved, the physics groups can include
them in the offline release where any user can have access to them via job options. This
view of Particle Definition Algorithms suggests that they should be Gaudi Algorithms
which register their output in StoreGate.

It is also natural to imagine that a user might want to use the Particle Definition
Algorithm as a tool inside of his/her own analysis. This view of Particle Definition
Algorithms suggests that they should be Gaudi AlgTools. During the March 3, 2004
Physics Analysis Tools meeting, it was decided that the algorithmic component of the
tool should be implemented as a Gaudi AlgTool which produces only local, transient
output and that a default Gaudi Algorithm should be provided to call the tool and
register the output in StoreGate.

It should be pointed out that a single physics group might contribute several Par-
ticle Definition Algorithms - even for the same type of particle and same output type.
For instance, the search for Higgs to four electrons might use a PDA that produces
IdentifiedElectrons with the key “HiggsTodeElectrons”, while a SUSY analysis might
use a different PDA that also produces IdentifiedElectrons with a different key.

7 Common Tools Proposal

The need for common tools is clear, and one of the goals of the UCL workshop was to de-
cide on a common interface for those tools. It was decided to use INavigableAMomentum
for most tools. For other tools that need pdg code, charge, or other information it seems
natural to use IParticle as a common interface.

The INavigabledMomentum interface requires a change to the Artemis hierarchy
if Artemis is to be compliant with these new tools. This modification is discussed in
Section 12 and in illustrated in Figure 77.

There was some discussion on modular tools like those being developed in Artemis
and PID. Artemis has begun the development of a generic tool consisting of a modular
“Looper”, “Calculator”, and “Selector” (see Section 2.2 Tools). Similarly, PID has a
“fanout” tool, which may be incorporated into the analysis tools package.

With the common IParticle interface, it should be possible (even straight forward)
to implement the “combine()” tools presented in conjunction with the BaBar-inspired
particle.

19

8 UserAnalysis Package Proposal

One of the major challenges of a novice user is the creation of an athena package, the
cmt configuration of a dual-use library, and the standard lines which setup a Gaudi
Algorithm. The ArtemisUser subpackage is an example of a skeleton package that
takes care of these standard things. It was proposed to make a similar UserAnalysis
subpackage in the Physics package to take care of these basic steps for a novice user.

9 Event Views

The concept of an “Event View” was discussed during the UCL workshop in the con-
text of a small group discussion. The goal of the discussion was not to arrive at an
architectural proposal, but do define user requirements. Because “Event Views” is a
new topic, we must first define it.

An “Event View” is a collection of physics objects which are coherent, exhaustive,
and mutually exclusive. Event views are not unique; for each event a user may wish to
consider the event with multiple different views. From this view, a user may wish to
calculate several quantities (thrust, likelihood the event came from a given hypothesis,
etc.) and associate it with the view (thus the collection of physics objects may include
non-4momentum like entities). By coherent, it is meant that an analyst should not
need to carry out additional checks or call additional tools to guarantee the consistency
of the physics objects in a given view. For example, if a particle is assigned a certain
PDG id, the relevant calibration constants should be used. Similarly, if vertexing is
used by one view and not another, the list of vertices for the views should behave as
expected. By exhaustive, it is meant that the sum of the energies of the physics objects
should be roughly the total energy of the event and that the vector sum of the pr of the
physics objects should be roughly equal to —p?iss. By mutually exclusive, it is meant
that the user is safe to consider any two objects as non-overlapping. For example, a
jet should not also be listed as an electron; a track and a matching cluster should not
be listed as separate objects, but put in some composite object. On the other hand,
cells may be shared between two jets if their kinematic weights are taken into account.
Clearly, what is meant by non-overlapping, or mutually exclusive, is not unique. Thus,
alongside the algorithms that create event views are algorithms that check for overlap.

The overlap algorithms:

e must be flexible, configurable, and modular to aid construction of event views

e must allow the user to specify level to which overlap is evaluated (just check to
the level of identified particles, or go down to the level of cells and tracks)

e support partial overlap (as in the case of cells in jets)

20

Event views are required by the user to be:

e casily specified (because they are not unique)
e driven by the analyst (via job options or run-time decisions)
e persistifiable

e navigable

10 Discussion on Associations

Associations were the most difficult issue for the UCL workshop. The difficulty stemmed
partially from the fact that there were no example use-cases for associations that could
not be satisfied through other means. It was agreed that what has been called “Navi-
gation” should be restricted to constant types of associations; thus what is referred to
(somewhat vaguely) as “Associations” are for non-constituent associations. The most
obvious example would be a muon that is associated with a jet but not a constituent
of the jet.

It was also agreed that the association strategy should support “labeled associa-
tions”: sets of associations which can be distinguished by use of a key. The use case
for labeled associations is as follows: one may wish to associate a jet with a muon for
purposes of b-tagging and associate a different muon with the same jet as potential
top-quark decay products; without a label to distinguish the associations this task is
difficult.

In Artemis, each object in the Artemis Hierarchy has a list of associated TAOs (see
Section 2.2 Associations). This structure forms a directed graph between TAO objects.
Without some base-class like TAO, it is difficult to provide such general associations.
Exacerbating the situation is the difficulty to decide on a base class fulfilling the role of
the Artemis TAO, but spanning the Combined Reconstruction, Identified Particle, and
Analysis domains.

Even if a base class was agreed upon (call it IAssoc), the implementation of the
associations is not so straightforward. Because some associated objects may be locked
in StoreGate, internal associations are seen to be problematic. External associations
could be implemented with a multimap of some type, for instance:

multimap <A*, multimap<string, IAssoc>>
multimap <A*, multimap<Enum, IAssoc>>

There was no convergence on the association topic : it was agreed that the de-

sign should be modular enough so that codes and tools written on the INaviga-
ble4dMomentum could be evolved easily when the association design is eventually chosen.

21

INavagable 14Momentum

INavigable4Momentum Artemis::IAO

accept()
Associations

t 4

Artemis::IMomentum

Implements Navigation?
Inherits from P4?Base?

Artemis::ICell Artemis::IParticle Artemis::|Jet
pdgid

charge
pointer to adaptee pointer to adaptee pointer to adaptee

Figure 13: Modification to Artemis to be compliant with common tools written on
INavigable4AMomentum.

11 Modifications to Artemis

For Artemis to be compliant with the common tools written in terms of INaviga-
ble4dMomentum, a modification to the Artemis hierarchy is expected. This modifica-
tion is shown in Figure 13. The shortcoming of this modification is that any tool which
returns an Artemis object in terms of INavigableAMomentum will need to be cast back
into the Artemis hierarchy. This would only present problems if an analyst were to mix
Artemis and non-Artemis objects in which case the cast might not succeed.

This modification to Artemis is expected to happen before the BNL workshop.
It is not yet clear how Artemis will provide the implementations of INavigable and
I4Momentum. I4Momentum can either be implemented by the Adaptors or by IMo-
mentum. Also, it is possible that Adaptors could navigate to their adaptees. This
functionality would be interesting, but would invite the analyst to mix Artemis and
non-Artemis objects in a single analysis. The safest solution would be for IMomentum
to inherit from NavigableTerminalNode.

12 Road Map for Analysis EDM

The analysis domain is still in its infancy. It is usueful to think of a plane spanned by
two axes: complexity and ease-of-use. Artemis represents an analysis framework that

22

is of minimal complexity and very user-friendly. Analysis based on the output of the
combined reconstruction (which was not designed for the analysis domain) represents
an analysis framework that is high in complexity and not particularly user-friendly.
The goal of the UCL workshop was to clarify the trajectory of both Artemis and the
analysis EDM. Ideally, the analysis EDM will arrive at a point of maximal ease-of-use
while still supporting very complex analysis requirements. Until the analysis EDM has
made progress on a number of issues (outlined below), the role of Artemis is still quite
clear. As the analysis EDM approaches its goal (referred to by some as “asymptopia”),
the relationship between Artemis (which is also evolving) and the analysis EDM will
need to be investigated further. The risk factor of having two analysis frameworks
is for a single experiment is clear, but it’s severity may be overestimated. The most
dangerous aspects of two analysis frameworks is not the class a user stores their particle
in, but the origin of those particles and the tools used to manipulate them. During the
UCL workshop, modifications to Artemis were suggested that will ensure that Artemis
clients have access to the same set of common tools. The common tools proposal is
outlined in Section 7 and the modifications to Artemis are outlined in Section 11. The
origin of the particles can also be made common by use of Particle Definition Algorithms
(see Section 6).

It was generally appreciated that several pieces of functionality should be incorpo-
rated into the analysis EDM. Some of this functionality is inspired by Artemis, and
some is new. Below we outline the most important functionality, comment on the plan
of action, and indicate a rough timeline for completion.

e Common Interface: The UCL workshop was successful in agreeing that IN-
avigabledMomentum will be the common interface for the relevant objects in
the Combined Reconstruction domain. Similarly, it was agreed that IParticle
will be the common interface for particle-like objects in the Identified Particle
and Analysis domains. Already, a new package Event/EventKernel which holds
I4Momentum.h, INavigable4AMomentum.h, and dictionaries (no implementation)
has been created. Also, a new package Event/NavFourMom has been created to
hold INavigableAMomentumCollection.h and .cxx (and dictionary). TrackParticle
is currently under development, as is the IParticle class. An example implemen-
tation of several IdentifiedParticles, the Particle Definition Algorithms, and the
UserParticle are expected for the BNL workshop (see Section 12.1). The common
interface for Associations was not found.

e Common Tools: It was decided that most kinematic tools will use the INaviga-
bledMomentum interface, although some tools may use IParticle as the interface.
Currently there are no common tools, though Artemis and PID have some for
their respective interfaces. It is expected that by the BNL workshop, a package
will be created and some common tools will be implemented. With the modifica-
tions to Artemis mentioned above, Artemis should be able to use these common
tools.

23

e Memory Management: Just as Artemis and the BaBar particle use shared
pointers for memory management, the analysis EDM should provide some mem-
ory management mechanism. Particle Factories and shared pointers may be im-
plemented for the BNL workshop, where the implementation will be reviewed.
The overall memory management strategy, the relationship to StoreGate, etc.
will most likely continue to evolve for some time.

e Generic Get, Select from TDS: One piece of Artemis functionality to im-
prove ease-of-use is the FromTDS::get() method. It was pointed out that similar
functionality can be achieved with StoreGate’s register, symlink, and retrieve
commands together with a base class that is INavigable. The functionality is
there in principle, but if it proves to be unacceptably complicated for the novice
user, additional utilities may be needed.

e Atlfast Compatibility: The ability for a user to prototype code with Atlfast
and then apply it to fully reconstructed events without rewriting (or even re-
compiling) is a key requirement for the Analysis EDM. Artemis provides this
functionality with appropriate fast simulation adaptors. This functionality can
be incorporated into the analysis EDM if Atlfast can fill the AOD in a sensible
way. The AOD/ESD task force is addressing this issue. Until this functionality
is available, Artemis will play a substantial role in analysis in Athena.

e Associations: Associations have been discussed extensively in this document.
There was some progress made with respect to associations, but no general solu-
tion was found and no proposal is presented in this document. Artemis currently
provides internal, unlabeled associations between Artemis::IAOs (and will proba-
bly provide labeled associations in the near future). The timeline for associations
in the analysis EDM is not clear.

e Event Views: The concept of Event Views is very new, and one of the most
high-level concepts proposed for the analysis EDM. Neither Artemis nor the anal-
ysis EDM currently provide Event Views, currently. Also, event view may store
associations.

12.1 Short Term Plan

e K. Cranmer volunteered to start implementing UCL design of Figure 4, particu-
larly the particle classes.

e S. Ferrag will come up with use cases and analysis examples based on the Babar
inspired particle class.

e . Akesson will proceed with the TrackParticle which is urgently needed as an
input to combined reconstruction and for B-tagging.

24

e Chameleon persistency and adoption of INavigable4AMomentum Association issues
will be discussed further and resolved in the EDM and PAT meetings ; hopefully
we will converge by the software workshop at BNL, May 23-28, 2004.

25

References

[1] RTF, Final Report of the Reconstruction Task Force, ATL-SOFT-2003-010.
[2] The UCL workshop agenda, http://agenda.cern.ch/fullAgenda.php?ida=a041436.
[3] Gamma, E. et. al., Design Patterns, Addison-Wesley, Reading, MA, 1994.

[4] Nordberg, M, Variations on the Visitor Pattern,
http://www.cs.wustl.edu/ schmidt/PLoP-96 /nordberg.ps.gz.

26

